Data Science Product Specialist - Enterprise Data | London | Bloomberg Careers

Data Science Product Specialist - Enterprise Data

Careers at Bloomberg

Back to Search

London

Posted Sep 20, 2022 - Requisition No. 108957

What is Enterprise Data?

Bloomberg's Enterprise Data department develops data offerings that are considered best in class by the capital markets community. Across real time market data, reference data, historical pricing data, and outstanding analytics we offer:

  •  The most comprehensive and highest quality content in the industry
  •  Distribution platforms that are flexible, reliable, fast, and easy to onboard
  •  Easy to use data that is ready for analysis
  • These critical datasets serve as the primary source of information across the front, middle, and back office at the most respected capital markets firms across the globe.

What is the Role?

Capital markets firms are purposefully embracing data science and machine learning techniques into their workflows. Motivated by increasingly sophisticated competition or cost savings, data science and machine learning have become a critical aspect of our customers’ business strategies. Bloomberg wants to be the leader in analysis ready data that allows clients to focus on the business of creating advanced analytics solutions rather than data ingestion and normalization.
You will play a significant role in helping customers and Bloomberg, together, achieve success. As hands on liaison between Bloomberg product development teams and the data science teams at our customers, the Data Scientist will provide expert technical design, data science thought leadership, and Bloomberg recommended standard methodologies as customers develop solutions on premises or in the public cloud.
The ideal candidate will be a customer focused data scientist with advanced technology skills that seeks opportunities to get their hands dirty while confidently working with clients to design and build solutions that will best demonstrate Bloomberg content and technology in conjunction with modern data science tools and workflows.

We'll trust you to:

  •  Lead deep technical discussions with customers, vendor partners, and Bloomberg colleagues from Product, Sales, Quant Research & Development, Engineering, and Client Services
  •  Efficiently communicate sophisticated statistical and technical concepts with various audiences
  •  Serve as subject matter authorities in demonstrating advanced data science workflows and technologies for capital markets use cases
  •  Engage with customers as part of their solution creation team
  •  Expertly make recommendations (based on standard methodologies) to customers and partners
  •  Develop collateral including tutorials, sample code, reference implementations, and presentations that will be used by data science practitioners as well as executive decision makers
  •  Provide feedback to Product, Quant, and Engineering teams to help shape product strategy and execution roadmap
  •  Balance hands on work with a desire to keep up with trends

What do I need to apply?

  •  Understanding of a wide range of statistical models (e.g. regression, decision trees, artificial neural networks) and their underlying assumptions
  •  Good programming skills in at least one of the commonly used languages for data analysis (e.g., python, R, Matlab. Knowledge of any other programming language is a plus.)
  •  Experience with applying data science/quantitative modeling to real world, financial use cases commonly deployed at capital market firms
  •  Knowledge of leading open source data analysis tools and machine learning libraries
  •  Experience in crafting technical documentation and presentations (white-board, small team, broad audience) and the ability to present to a technical and non-technical audience.
  •  Ambitious approach and comfortable to work in a non-hierarchical, large global organization where interaction with senior management is required
  •  Passion for constant learning
  •  Ability to travel

It's a plus if you have:

  •  Experience applying advanced machine learning to large scale, financial modelling problems
  •  Master's degree or Ph.D. in a quantitative discipline
  •  Knowledge of AWS, GCP, and/or Azure data science and machine learning services
  •  Experience with tools and frameworks enabling large scale data analysis (e.g., Spark)
  •  End-to-end knowledge of the data science problem, including large scale data and data pipeline management
  •  Understanding of capital markets, banking, asset management, and/or the trade lifecycle

*Please note we use years of experience as a guide but we certainly will consider applications from all candidates who are able to demonstrate the skills necessary for the role.If this sounds like you:Apply if you think we're a good match! We'll get in touch with you to let you know what the next steps are.Bloomberg is an equal opportunity employer and we value diversity at our company. We do not discriminate on the basis of age, ancestry, colour, gender identity or expression, genetic predisposition or carrier status, marital status, national or ethnic origin, race, religion or belief, sex, sexual orientation, sexual and other reproductive health decisions, parental or caring status, physical or mental disability, pregnancy or maternity/parental leave, protected veteran status, status as a victim of domestic violence, or any other classification protected by applicable law.
Bloomberg is a disability inclusive employer. Please let us know if you require any reasonable adjustments to be made for the recruitment process. If you would prefer to discuss this confidentially, please email emea_recruit@bloomberg.net. Alternatively, you can get support from our disability partner EmployAbility, please contact +44 7852 764 684 or info@employ-ability.org.uk

Similar jobs

    The Bloomberg Talent Network

    Stay connected with us and be among the first to learn about new job opportunities. We’ll use the information you provide to help us get in touch with you to align your expertise with our opportunities and better direct our conversations.

    CONNECT WITH US